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Abstract

Purpose – Free convection inside a square, circular, or elliptic cavity with gravity oscillation is a
special class of problems. In a microgravity environment, the reduction or elimination of natural
convection can enhance the properties and performances of materials such as crystals. However,
aboard orbiting spacecrafts, all objects undergo low-amplitude broadband perturbed accelerations, or
g-jitter, caused by crew’s activities, orbiter maneuvers, equipment vibrations, solar drag, and other
sources. Therefore, there is a growing interest in understanding the effects of these perturbations on
the systems’ behavior. There is no information of flow, heat transfer, and irreversibility analyses
in the current literature that considers such a situation in a porous medium. This motivates this paper
to conduct the current research.

Design/methodology/approach – As a special case, an elliptic enclosure is considered here.
The enclosure is filled with a porous medium whose flow is modeled by the Darcy momentum
equation. The full governing differential equations are simplified by the Boussinesq approximation
and solved by a finite volume method. Prandtl number (Pr) is fixed at 1.

Findings – The average Nusselt number (Nu), Bejan number (Be), and entropy generation number
(Ns) are adopted to characterize the heat transfer and irreversibilities. Gravity oscillation introduces
periodic behavior to the Nu, Be, and Ns rate. Depending on the frequency and the Rayleigh number
(Ra), three distinguishable regimes of c behavior are identified: periodic and synchronous, periodic
and asynchronous, and non-periodic and asynchronous.

Research limitations/implications – Current research is valid only for laminar Darcy type flow
situation in the porous media.

Originality/value – This paper will extend the existing theory of thermovibrational convection to
porous media.
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Paper type Research paper

Nomenclature
A ¼ area of the cavity (m2)
a ¼ half of the major axis of the cavity (m)
b ¼ half of the minor axis of the cavity (m)
Be ¼ Bejan number (equation (19)).
Cp ¼ specific heat of the fluid (J kg21 8C21)
Cs ¼ specific heat of the solid matrix

( J kg21 8C21)
Ecm ¼ modified Eckert number

¼ u2
0D

2=ðCp K DTÞ
� �

K ¼ permeability of the porous media (m2)
KE ¼ kinetic energy (J)

Ns ¼ entropy generation number (equation
(18))

Nu ¼ Nusselt number (equations (20) and
(22))

Pr ¼ Prandtl number, ð¼ n=aÞ:
Ra ¼ Rayleigh number (equation (3)).
S000

gen ¼ entropy generation rate (W m23 K21)

S000
0

¼ characteristics entropy transfer rate
(equation (16))

T ¼ temperature of the fluid (8C)
T0 ¼ reference temperature (8C)
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t ¼ time (s)
u* ¼ ¼ x-component of the velocity

(m s21)
v* ¼ ¼ y-component of the velocity

(m s21)
u ¼ ¼ x-component of the dimensionless

velocity ð¼ u*=u0Þ
v ¼ ¼ y-component of the dimensionless

velocity ð¼ v*=u0Þ
u0 ¼ reference velocity, ð¼ a=DÞ:
x* ¼ horizontal distance (m)
y* ¼ vertical distance (m)
x ¼ dimensionless horizontal distance

ð¼ x*=DÞ
y ¼ dimensionless vertical distance

ð¼ y*=DÞ
; ¼ volume of the cavity (m3)

Greek symbols
a ¼ thermal diffusivity of the fluid (m2 s21)

b ¼ thermal expansion coefficient of the
fluid (8C21)

c* ¼ streamfunction (m2 sec21)
c ¼ dimensionless streamfunction

ð¼ c*=aÞ
Q ¼ dimensionless temperature,

ð¼ ðT 2 T0Þ=DTÞ
v* ¼ angular frequency (Hz)
v ¼ dimensionless angular frequency

(equation (3)).
r ¼ density of the fluid (kg m23)
rs ¼ density of the solid matrix

(kg m23)
t ¼ dimensionless time ð¼ t a=ðD 2 sÞÞ
s ¼ empirical constant (equation (3))
n ¼ kinematic viscosity of the fluid

(m2 sec21)
f ¼ porosity of the porous media
u ¼ angle of orientation of the cavity

Introduction
The study of free convection heat transfer inside enclosures (porous or non-porous) is a
persistent problem in a variety of situations. During the last two decades, many articles
have been published in this field. For a comprehensive reference, see Bejan (1984). Free
convection inside a square, circular, or elliptic cavity with gravity oscillation is a
special class of problems. In a low gravity or microgravity environment, the reduction
or elimination of natural convection can enhance the properties and performances of
materials such as crystals (Hirita et al., 2001). However, aboard orbiting spacecrafts, all
objects undergoes low-amplitude broadband perturbed accelerations, or g-jitter, caused
by crew’s activities, orbiter maneuvers, equipment vibrations, solar drag, and other
sources. Therefore, there is a growing interest in understanding the effects of these
perturbations on the systems’ behavior. The reference articles by Hirata et al. (2001),
Biringen and Danabasoglu (1990), Gershuni and Zhukhovitskiy (1986), Goldhirsch et al.
(1989), Kamotani et al. (1981), Kondos and Subramanian (1996), Ferguson and Lilleleht
(1996), Gershuni et al. (1983), Sharifulin (1986) and Wadih and Roux (1988) give a good
sense of the scope of the flow field and thermal field behavior inside or around
rectangular enclosures and cylindrical geometries under gravity oscillation. Until 2003,
there has been no reported research activities that systematically elucidates the effects
of gravity oscillation on the natural convection heat transfer and entropy generation
rates inside elliptic enclosures in a microgravity environment. Furthermore, there has
been no research of the entropy generation nature inside a square or circular cavity
under gravity oscillation. Most of the published articles, related to elliptic geometry,
report the external flow around cylinders or the internal flow inside annuli. The
reference articles by Chmaissem et al. (2002), Moukalled and Acharya (1996), Chen and
Wang (1996), Hossain et al. (1998), Mota et al. (2000), Badr and Shamsher (1993),
Schreiber and Singh (1987) and Cheng and Chao (1996) indicate the scope of heat
transfer and flow problems of elliptic cylinders in different flow situations, boundary
conditions, and geometric configurations.
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Most of the published analyses have been restricted, from a thermodynamic point
of view, to only First Law (of thermodynamics) analyses. The contemporary trend
in the field of heat transfer and thermal design is to perform a Second Law
(of thermodynamics) analysis, and a design-related analysis of entropy generation
minimization (Bejan, 1996). The latter is employed to model and optimize real devices
that owe their thermodynamic imperfection to heat transfer, mass transfer, and fluid
flow irreversibilities. Entropy generation minimization is also known as
“thermodynamic optimization” in engineering, where it was first developed, and
more recently as “finite space-time thermodynamics” in physics (Bejan, 2002). Such a
method combines the most basic concepts of heat transfer, fluid mechanics, and
thermodynamics into simple models. They are used in the optimization of real
(irreversible) devices and processes, subject to finite-size and finite-time constraints
that are, in fact, responsible for the irreversible operation of the device. Therefore, for
the proper use of this method, an analyst must know the behavior of the system’s
irreversibilities in terms of the entropy generation and the variation of the
irreversibilities with the system parameters, including the flow parameters, transport
properties, and geometry.

Therefore, the entropy generation characteristics are examined, along with the
nature of the heat transfer inside a porous elliptic cavity, by numerically solving the
fully nonlinear time-dependent momentum and energy equations in a two-dimensional
(2D) Cartesian frame. More specifically, the cavity is divided into two symmetrical
parts by the y-axis in Figure 1, and the wall of each part of the cavity is perfectly
isothermal, but differentially heated. The gravity oscillation is assumed to follow a
perfect sine wave. The results in this work are presented for a range of Rayleigh
numbers (Ra) ð10 # Ra # 5; 000Þ; the angles of orientation ð2908 # u # þ908Þ; and
different frequencies of oscillation.

Figure 1.
Schematic diagram of the

problem under
consideration
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Equations and numerical methods
Figure 1 shows the domain to be analyzed and the adopted coordinate system a and b
represent the corresponding half of the minor axis and the major axis, respectively.
All asterisked quantities in this paper represent the dimensional forms of the
considered variables. Fluid, in a 2D cavity with an elliptic cross-section, is subjected
to a sinusoidal acceleration that is parallel to the vertical line OB (Figure 1) in a
zero-gravity field. The cavity wall of the left symmetrical part (about the y-axis) is
cold, and the wall of right part is hot. It is assumed that the cavity is completely filled
with fluid. The uneven density of the fluid, originating from the temperature
difference of the walls, yields a buoyancy force inside the cavity. This buoyancy
force, together with the fluctuating acceleration, drives the convective motion. It is
also assumed that the saturated porous medium is isotropic in its thermal
conductivity and follows the Darcy model (Bejan, 1984). Finally, the set of
non-dimensional governing equations, in terms of the stream function c and
temperature Q, are:

›2c

›x 2
þ

›2c

›y 2
¼ Ra

›Q

›x
sinðvtÞ ð1Þ

and

›Q

›t
þ

›c

›y

›Q

›x
2

›c

›x

›Q

›y
¼

›2Q

›x 2
þ

›2Q

›y 2
; ð2Þ

where

x ¼
x*

2b
; y ¼

y*

2b
;c ¼

c*

a
;Q ¼

T 2 T0

DT
;DT ¼ Thot 2 Tcold;T0 ¼

Thot þ Tcold

2

t ¼ t
a

ð2bÞ2s

� �
;Ra ¼

gKbDT2b

an
;v ¼

v*s ð2bÞ2

a
; u ¼

›c

›y
; v ¼ 2

›c

›x

s ¼
frCp þ ð1 2 fÞrsCs

rCp
;

ð3Þ

subject to the following boundary conditions:

For t . 0

c ¼ 0 and Q ¼ 0:5 along p1 2 p4 2 p2

c ¼ 0 and Q ¼ 20:5 along p1 2 p3 2 p2:

ð4Þ

The meanings of the different parameters in equations (1)-(4) are given in the
nomenclature section.

To solve the governing equations, we develop a computer code (NATURE, written
in FORTRAN 77). NATURE is a finite volume code, but is based on a finite element
approach to represent the geometry. The finite volume method proceeds by integrating
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equations (1) and (2) over a fixed control volume, which, by using Gauss’s Theorem,
results in: Z

s

›c

›x
dnx þ

Z
s

›c

›y
dny ¼

Z
y

Ra
›Q

›x
sinðvtÞdy ð5Þ

and Z
y

›Q

›t
dy þ

Z
s

uQ dnx þ

Z
s

vQ dny ¼

Z
s

›Q

›x
dnx þ

Z
s

›Q

›y
dny ð6Þ

where y and s denote the volume and surface integrals, respectively, and dnx and dny
are the differential Cartesian components of the outward normal surface vector. The
surface integrals are integrations of the fluxes of the conserved quantities, whereas the
volume integrals represent the source terms. What defines the control volume is an
important distinguishing feature of the finite volume implementations. After, the
computational domain is discretized into elements, the control volume surfaces are
defined by element mid-planes. This approach has been used by other researchers such
as Schneider and Raw (1986, 1987). The procedure creates a control volume for each
node so that with the boundary of each interior control volume is defined by eight
line-segments in 2D. This arrangement is shown in Figure 2(a). The integral equations,
equations (5) and (6), are applied to each discrete control volume, created by this
technique. The continuous volume integrations are relatively easy to convert to a
discrete form, as will demonstrate later. Since the continuous surface integrations are
more involved, they are converted to a discrete form by evaluating them at the
integration points (ip). The location of the integration points for one flux element is
shown in Figure 2(b) for a 2D quadrilateral element. The surface fluxes must be
discretely represented at the integration points to complete the conversion of the
continuous equations to their discrete counterparts. The discrete forms of the integral
equations are written as:

ip

X ›c

›x
Dnx

� �
ip

þ
ip

X ›c

›y
Dny

� �
ip

2Ra
›Q

›x
sinðvtÞVol ¼ 0 ð7Þ

and

Vol
Q2Q0

Dt

 !
þ

ip

X
ðuDnxÞ

0
ipQip þ

ip

X
ðvDnyÞ

0
ipQip

2
ip

X ›Q

›x
Dnx

� �
ip

2
ip

X ›Q

›y
Dny

� �
ip

¼ 0

ð8Þ

where Vol is the volume of the control volume, the ip denotes an integration point, S is
the summation over all the integration points of the surface, Dnx and Dny are the
discrete outward surface vectors, Dt is the time step, 0 refers to mean “at the old time
level”, and the overbar on the source terms indicates an average value for the control
volume.
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Figure 2.
(a) The definition of the
control volume, (b)
integration point
definition for a 2D
quadrilateral element, and
(c) four noded flux element
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The time step term:

Vol
Q2Q0

Dt

 !
; ð9Þ

is a first-order accurate backwards Euler approximation of the transient term. Also,
called the “lumped mass” approximation. Since it is robust and fully implicit, it creates
no time step limitation and is easy to implement.

Following the standard finite element approach, shape functions are used to
evaluate the derivatives for all the diffusion terms. For instance, for a derivative in the
x direction at ip:

›F

›x

����
ip

¼
n

X›Nn

›x

����
ip

Fn; ð10Þ

where the summation is over all the shape functions for the element. In equation (10), F
represents any variable, for example, Q and c. The Cartesian derivatives of the shape
functions can be expressed in terms of their local derivatives via the Jacobian
transformation matrix:

›N

›x

›N

›y

0
BBB@

1
CCCA ¼

›x

›s

›y

›s

›x

›t

›y

›t

0
BB@

1
CCA

21 ›N

›s

›N

›t

0
BBB@

1
CCCA: ð11Þ

For the (i, j) flux element (Figure 2(c)), the domain of the element can be defined in terms
of the local, non-orthogonal coordinates s and t by:

xðs; tÞ ¼ N 1xi;j þ N 2xiþ1;j þ N 3xi;jþ1 þ N 4xiþ1;jþ1

yðs; tÞ ¼ N 1yi;j þ N 2yiþ1;j þ N 3yi;jþ1 þ N 4yiþ1;jþ1;
ð12Þ

where the shape functions N are given by:

N 1 ¼
1

4
ð12 sÞð12 tÞ; N 2 ¼

1

4
ð1þ sÞð12 tÞ; N 3 ¼

1

4
ð12 sÞð1þ tÞ; N 4 ¼

1

4
ð1þ sÞð1þ tÞ:

ð13Þ

To discretize the advection terms, a modified central differencing scheme, based on the
upwind differencing scheme (UDS) plus the correction, is used which is mathematically
expressed as:

Fip ¼ Fup þ ðDFipÞ
0; with DFip <

Dx

2

›F

›x

� �
ip

: ð14Þ

Equation (14) shows the approximation of Fip for the x-direction only. The
approximation of the source term is shown in Das et al. (2003) and is not repeated here.
After all the cell face fluxes and sources are summed, the discretized transport equation
reduces to the following algebraic equation:
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APFP þ
nb

X
AnbFnb ¼ QF; ð15Þ

where the coefficient Anb contains the convective and diffusive flux contribution, and
QF represents the source term. The system of equations is solved by using the TDMA
solver (Ferziger and Peric, 1996). The entire computational domain is subdivided by
unequally spaced control volumes ( ¼ 14,848). The time increment (Dt) is 1024 in most
of the cases, but sometimes, especially at a high Ra, smaller values are chosen to
confirm the accuracy of the results.

Entropy generation
The dimensionless form of the entropy generation rate ðS000

genÞ is the entropy generation
number (Ns) (Bejan, 1996) which is the ratio of entropy generation rate ðS000

genÞ to the
characteristic entropy transfer rate ðS000

0 Þ: For the present problem, S000
0 can be estimated

from the following:

S000
0 ¼

kðDTÞ2

D 2T2
0

: ð16Þ

For the porous medium which follows the Darcy model, the local rate of the entropy
generation ðS000

genÞ can be calculated (Bejan, 1984) from the following:

S000
gen ¼

k

T2
0

ð~7TÞ2 þ
m

KT0
ð ~VÞ2: ð17Þ

By using equations (16) and (17), one can express Ns as:

Ns ¼
S000

gen

S000
0

¼
›Q

›x

� �2

þ
›Q

›y

� �2
" #

þ
Ecm £ Pr

V

›c

›x

� �2

þ
›c

›y

� �2
" #

: ð18Þ

Equation (18) consists of two parts. The first part (the first bracketed term at the
right-hand side of equation (18)) is the irreversibility due to the finite temperature
gradient and is generally referred to the heat transfer irreversibility (HTI). The second
part (the second bracketed term in equation (18)) is the contribution of the fluid friction
irreversibility (FFI) to the entropy generation. Therefore, the overall entropy
generation for a particular problem is an internal competition between the HTI and the
FFI. Usually, natural convection problems at low and moderate Ra are dominated by
the HTI. The Ns is reliable for generating entropy generation profiles or maps, but fails
to give any idea whether the fluid friction or the heat transfer dominates. Two alternate
parameters, the irreversibility distribution ratio (F) and the Bejan number (Be), are
becoming increasingly popular among the Second Law analysts. The Be, which is the
ratio of HTI to the Ns, is mathematically expressed as:

Be ¼
HTI

HTI þ FFI
: ð19Þ

The Be ranges from 0 to 1. Accordingly, Be ¼ 1 is the limit at which the HTI
dominates, Be ¼ 0 is the opposite limit at which the irreversibility is dominated by the
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fluid friction effects, and Be ¼ 1=2 is the case in which the heat transfer and fluid
friction entropy generation rates are equal.

Results and discussions
For the benchmarking purpose, a square porous cavity is selected. The remaining
results in this paper are calculated for an elliptic cavity with an aspect ratio of
2ð¼ b=aÞ:

Benchmarking
For benchmarking, a differentially heated square porous cavity under a constant
gravity force is considered. The gravity force is parallel to the isothermal walls, and the
two remaining walls are adiabatic. The test case is similar to the cases in the references
(Baytas and Pop, 1999; Walker and Homsy, 1978; Gross et al., 1986; Manole and Lage,
1992; Moya et al., 1987). The average Nu is calculated for three different Ra (Ra ¼ 10,
100 and 1,000), and compared to those in the literature (Baytas and Pop, 1999; Walker
and Homsy, 1978; Gross et al., 1986; Manole and Lage, 1992; Moya et al., 1987). These
comparisons, summarized in Table I, confirm that the results are in good agreement
with the previous results. Therefore, we are confident that the proposed numerical
method and the results are accurate.

Steady-state limit
The flow and thermal fields behavior in the steady-state limit (i.e. the results with no
gravity fluctuation) are presented first. In this limit, the sin(vt) term in equation (1) is
temporarily dropped. The Isothermal lines inside the cavity are shown in Figure 3 for
the seven different Ra. A total of 21 isothermal lines are plotted in each figure with an
interval of DQ ¼ 0:05: The corresponding streamfunction plots are shown in Figure 4.
The fluid, adjacent to the right wall, is heated and begins to flow upwards, turns at the
top, and mixes with the downward stream of the cold fluid, adjacent to the left wall.
This causes the circulation inside the cavity which is very weak at Ra ¼ 10: The
strength of the circulation is reported by the value of the maximum streamfunction
(cmax) in the figure title. Also, it is evident that the thermal field is almost unaffected by
the flow field at such a low Ra. A conduction-like isotherms are observed at Ra ¼ 10
which is symmetric about the vertical centerline of the cavity. The streamlines
resemble concentric ellipsis. With an increase in the Ra, for example, Ra ¼ 50; the
symmetric pattern of the isothermal lines starts to break that is observed at a low Ra.
A convection current develops inside the cavity at this Ra, affecting the thermal field.
The core of the streamline tilts slightly towards the left wall, but the streamlines near

Nuav

Ra ¼ 10 Ra ¼ 100 Ra ¼ 1,000

Baytas and Pop (1999) 1.079 3.16 14.06
Walker and Homsy (1978) – 3.10 12.96
Gross et al. (1986) – 3.14 13.45
Manole and Lage (1992) – 3.12 13.64
Moya et al. (1987) 1.065 2.80 –
Present prediction 1.079 3.14 13.82

Table I.
Comparison of average
Nu with some previous

numerical results
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the cavity wall have the same elliptic shape as before. The isothermal lines are even
more asymmetric at Ra ¼ 100: Two small portions at the bottom of the right wall and
the top of the left wall indicate a higher concentration of the isothermal lines, as seen in
Figure 3. These portions are a clear indication of the thermal spots where the
temperature gradient as well as the heat transfer rate is higher than the central portion
of the cavity. A convective distortion of the isothermal lines is observed at Ra ¼ 250
and 500. The thermal spots extend as the Ra increases, and the streamlines are no
longer elliptic in shape. When a further increase in the Ra elongates the thermal spots
along the wall, a boundary layer type of flow is observed at Ra ¼ 1; 000 and Ra ¼
5; 000: The magnitude of the fluid velocity at a high Ra is relatively small in the middle
portion of the cavity, compared to the magnitude of the fluid velocity near the cavity
walls. The steady-state average Nusselt number (Nuav, steady) and entropy generation
number (Nsav, steady) are calculated by the following equations:

Nuav;steady ¼
2

pðaþ bÞ

Z
S

›Q

›n

����
wall

ds; ð20Þ

Figure 3.
Isothermal lines at
(a) Ra ¼ 10, (b) Ra ¼ 50,
(c) Ra ¼ 100, (d) Ra ¼ 250,
(e)Ra ¼ 500, (f)Ra ¼ 1,000
and (g) Ra ¼ 5,000
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Nsav;steady ¼
1

;

Z
;

Ns d;; ð21Þ

where s is the distance along the hot wall, S is the arc length of p1 2 p4 2 p2, and ;
represents the volume of the cavity. Figure 5 shows the distribution of the Nuav, steady,
as a function of the Ra, at five different u. Two distinct zones, depending on the
Nuav, steady and Ra relationship, are shown in Figure 5. At the conduction regime
(the low Ra), the average Nu is the same in magnitude for all u and independent of the
Ra’s variation. At the convection dominated regime, the relationship between the Nuav,

steady and Ra is linear (in a log-log plot) in nature. At this regime, the magnitude of the
Nuav, steady depends on the u at a particular value of Ra. Figure 6 shows the variation of
the Nuav, steady with u at three different Ra. The angular location, u ¼ 2908; is the most
unstable position for the fluid (a hot bottom wall and cold top wall), and u ¼ þ908 is
the most stable position (a cold bottom wall and hot top wall). The heat transfer rate
exhibits its maximum at u < 2108 approximately for all the Ra. Any change in the u,
either in a clockwise or an anti-clockwise direction from this position, causes a decrease
in the Nuav, steady. The Nsav, steady increases as Ra is increased for all u (Figure 7).
The variation of the Nsav, steady with the u (Figure 8) indicates a similar trend to that
seen in the Nuav, steady 2 u profiles.

Figure 4.
Streamlines at (a) Ra ¼ 10

(cmax ¼ 0.5456),
(b) Ra ¼ 50

(cmax ¼ 2.6353),
(c) Ra ¼ 100

(cmax ¼ 4.8937),
(d) Ra ¼ 250

(cmax ¼ 9.8594),
(e) Ra ¼ 500

(cmax ¼ 15.3667),
(f) Ra ¼ 1,000

(cmax ¼ 22.7433), and
(g) Ra ¼ 5,000

(cmax ¼ 52.0875)

Heat transfer and
entropy

generation

161



Figure 6.
Steady state average Nu
as a function of angle of
orientation at different Ra

Figure 5.
Steady state average Nu
as a function of Ra at
different angles of
orientation

Figure 7.
Steady state average Ns as
a function of Ra at
different angles of
orientation
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Vibrational convection
We start with the heat transfer characteristics inside the cavity. The rate of the
heat transfer is measured in terms of a dimensionless Nu. Once the gravity
vibration is introduced (at time t ¼ t0), it takes some time to attain the convective
motion inside the cavity (the determination of this time is beyond the scope of this
paper). For the details about the setup time and instability, refer to Gershuni and
Lyubimov (1997). At a particular time, t ¼ t0 þmDt;m ¼ 0; 1; 2 . . . ; the normal
component of the temperature gradient (i.e. ›Q/›njw) near the wall is measured
which is a function of the time and distance. An integration is then carried out as
follows:

Nuav ¼ NuavðtÞ ¼
1

pðaþ bÞ
G

I
›Q

›n

����
���� ds; ð22Þ

along the whole boundary of the cavity (Gershuni and Lyubimov, 1997) to attain the
spatially averaged Nu (Nuav) as a function of the dimensionless time. For the limited
time interval, 0 . t $ 4; the variation of the Nuav is reported as a function of time (t)
in Figure 9 for four different Ra. In a real simulation, the time interval is much longer
than this time interval. It is evident from Figure 9 that an induced gravity oscillation
introduces true periodic behavior of the average heat transfer rate. Since we used the
absolute value of the normal component of the temperature gradient (equation (22))
during the calculation of the Nuav, the fluctuation of Nuav appears in the positive half of
the Nuav 2 t plot. The periodic response of Nuav is synchronized with the forced
acceleration; i.e. the same period of oscillation as that of the forced acceleration. This
synchronous relation is shown in Figures 9 and 10. The phase portraits are generated
by plotting the value of the Nuav (Figure 10) and the Nsav (Figure 11) with a 1/4 period
phase lag (denoted by d) against the unlagged value of the Nuav and Nsav. For both
cases (Figures 9 and 10), the closed loop in the phase portrait indicates the synchronous
relation between the gravity oscillation and system parameters (Nuav, Nsav, etc.). At the
upper extreme of the oscillation, vt ¼ ð2m2 1Þp=2; m ¼ 1; 2; 3 . . . ; the magnitude of

Figure 8.
Steady state average Ns as

a function of angle of
orientation at different Ra
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Figure 10.
Phase portrait of Nu at
Ra ¼ 100 and u ¼ 08

Figure 9.
Average Nu (Nuav) as a
function of dimensionless
time (t) at v ¼ 2p and
Ra ¼ 50, 100, 500, and
1,000

Figure 11.
Phase portrait of Ns at
Ra ¼ 100 and u ¼ 08
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the Nuav approaches the corresponding value of the Nuav, steady. At the lower extreme
of the oscillation, vt ¼ mp; m ¼ 1; 2; 3 . . . ; the gravity force disappears. The heat
transfer inside the cavity occurs in the conduction mode.

The Ns and Be are calculated by equations (18) and (19), respectively, as functions of
the spatial coordinates and time. The volume averaged value of the Ns (Nsav) and Be
(Beav) can be calculated by the following:

Nsav ¼ NsavðtÞ ¼
1

;

Z
;

Nsðx; y; tÞ d; ð23Þ

and

Beav ¼ BeavðtÞ ¼
1

;

Z
;

Beðx; y; tÞ d; ð24Þ

where ; represents the volume of the cavity. The Nsav is plotted as a function of
the dimensionless time in Figure 12 for three different values of the Ra. We know
that the Nsav 2 t behavior is similar to the Nuav 2 t behavior. The periodic
response of the Nuav synchronizes with the gravity oscillation. At a particular time,
the irreversibility is higher at a high Ra. The maximum value of the Nsav is
obtained for any Ra when gravity oscillation reaches its upper extreme ðvt ¼
ð2m2 1Þp=2; m ¼ 1; 2; 3. . .Þ: In the absence of gravity ðvt ¼ mp; m ¼ 1; 2; 3. . .Þ;
Nsav of each Ra is the same.

The Beav distribution remains synchronized with the gravity oscillation. Figure 13
shows the distribution of the Beav as a function of dimensionless time at Ra ¼ 50; 100,
500, and 1,000, respectively. The time gap is set between 1 and 3 for convenience. At
the lower extreme of the gravity oscillation, due to the absence of gravity force, there is
no convective motion inside the cavity. This causes the maximum dominance of the
HTI, when the Beav reaches its maximum value ð¼ 1Þ: This is true for all the Ra. For all
the Ra, the Beav shows its minimum at the upper extreme of the oscillation, where the
convection motion is well set and the FFI has a reasonable domination over the HTI.

Figure 12.
Average Ns (Nsav) as a

function of dimensionless
time (t) at v ¼ 2p and
Ra ¼ 50, 100, 500, and

1,000
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This minimum value of the Beav is lower in magnitude for a higher Ra. At a higher Ra
(for example, Ra ¼ 1; 000) a boundary layer type flow is commonly observed in a
steady-state and constant gravity situation. However, for the situation where the flow
field is affected by the gravity oscillation, there is no immediate formation of the
hydrodynamic and thermal boundary layers. At the beginning of the oscillation (for
example, at t ¼ 2 in Figure 13), no gravity force and no FFI exists. The conduction
dominated heat transfer contributes a little to the HTI. With the absence of FFI, the
HTI equals the Nsav and the corresponding Beav equals 1 (Figure 13). A nonzero
gravity component appears just after the beginning time ðt ¼ 2Þ; which immediately
sets the convective motion inside the cavity so that a positive contribution to the
overall entropy generation rate is now derived from the FFI. Then, the Beav rapidly
drops to a small value within a small period of time, since a hydrodynamic boundary
layer forms, and the thermal boundary layer is still in its developing stage. After
formation, the additional modification of the hydrodynamic boundary layer, with time,
is slow, and by this time, the thermal boundary layer is finally shaped with the
increasing temperature gradient, as well as the HTI. Slowly, the Beav drops to its
minimum value up to the upper extreme of the oscillation.

Figures 14-16 portray the temporal variations of the Nuav, Nsav, and Beav at
different u, respectively. Since the time dependent nature of these parameters at u ¼ 08
has been presented (Figures 9, 12, and 13), it is omitted here. Any inclination of the
cavity, either clockwise or anti-clockwise, presents a different picture of the variations
of the parameters which exhibit a certain pattern of periodic repetition with time. For
example, the variation of the Nuav at u ¼ þ608 is taken for the time interval t ¼ 1-2
(Figure 14). During the first half of this time interval, t ¼ 1-1.5, the Nuav increases with
t from its minimum value (at t ¼ 1Þ; peaks at t ¼ 1:25; and then decreases with the
increasing t, repeating its minimum value again at t ¼ 1:5: During the second half of
the interval, t ¼ 1.5-2, a similar distribution pattern is observed, but now the
magnitude of the Nuav is higher than the magnitude at the first half except at t ¼ 2;
where the minimum value of the Nuav is repeated. In contrast, for u ¼ 2608; the same

Figure 13.
Average Be (Beav) as a
function of dimensionless
time (t) at v ¼ 2p and
Ra ¼ 50, 100, 500, and
1,000
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Figure 14.
Average Nu (Nuav) as a

function of dimensionless
time (t) at v ¼ 2p and

different angles of
orientation

Figure 15.
Average Ns (Nuav) as a

function of dimensionless
time (t) at v ¼ 2p and

different angles of
orientation

Figure 16.
Average Be (Nuav) as a

function of dimensionless
time (t) at v ¼ 2p and

different angles of
orientation
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pattern of distribution is observed for the Nsav (Figure 15), but the opposite distribution
pattern is seen for the Beav (Figure 16).

The spatially averaged kinetic energy KEav (Hirata et al., 2001) is calculated
according to the following equation:

KEav ¼ KEavðtÞ ¼
1

2A

Z Z
ðu 2 þ v2Þ dx dy; ð25Þ

where A is the cross-sectional area of the cavity. The KEav serves as a global indicator
of responses (Hirata et al., 2001). The distribution of the KEav, as a function of t, is
shown in Figure 17 for two Ra (Ra ¼ 50 and 100). The synchronous behavior of the
KEav 2 t profile with gravity oscillation is similar to the Nuav 2 t or Nsav 2 t profile,
as described earlier.

To this point, only a single frequency ðv ¼ 2pÞ has been considered. The remainder
of this paper is devoted to identifying the effect of frequency on the ranges of the Ra in
which the flow and heat transfer variations are periodic and synchronous, periodic and
asynchronous, or non-periodic and asynchronous (Figure 18(a)-(d)). The
streamfunctions (c) in Figure 18(a)-(c) are monitored at the center ðx ¼ y ¼ 0Þ of the
cavity. The patterns of the variation in c, Nuav, and Nsav, with time, are more or less
the same at a particular combination of v and Ra. The PSR natures of the results are
broadly summarized in Figure 18(d), as a function of v and Ra. Each of the 132
computational runs used to construct Figure 18(d) are obtained after the initial
computational transients decay. Figure 18(a) shows a typical example of a periodic and
synchronous response (PSR) with forced acceleration. The periodic response provides a
solution with the same period as the forced acceleration. A synchronous response
describes a result with the same sine wave shape as the forced acceleration. The square
symbols in Figure 18(d) represent the PSR cases; the open square symbol identifies the
case in Figure 18(a). Figure 18(b) is a typical example of a periodic but asynchronous
response (PAR). The circle symbols in Figure 18(d) represent the PAR cases; the open
circle symbol signifies the case in Figure 18(b). The sharp spikes in c, seen in
Figure 18(b), are used as a the characteristic feature of the asynchronous response.

Figure 17.
Average kinetic energy
(KEav) as a function of
dimensionless time (t) at
v ¼ 2p and Ra ¼ 50, 100
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The heavy solid line in Figure 18(d) separates the synchronous and asynchronous
responses; however, more simulations are required in the region, bounded
by the dashed line and solid line, to better identify the critical
periodic-synchronous-to-periodic-asynchronous transition Ra. Figure 18(c) is a
typical non-periodic and asynchronous response (NAR). The triangular symbols in
Figure 18(d) represent the NAR cases; the open triangle symbol denotes the case in
Figure 18(c). A second heavy solid line is used in Figure 18(d) to separate the
periodic-synchronous and non-periodic-asynchronous responses; however, more
simulations are needed in the region, bounded by the solid line and dashed line, to
better identify the critical periodic-asynchronous-to-non-periodic-asynchronous
transition Ra.

Figure 18.
Time evolution of

streamfunction c at
(x, y) ¼ (0, 0) when

(a) v ¼ 6p, Ra ¼ 100,
(b) v ¼ 16p, Ra ¼ 1,000,
(c) v ¼ 100p, Ra ¼ 2,000

and (d) summary of the
periodicity
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Conclusions
A numerical solution to the governing momentum and energy equations for a porous
elliptic cavity is presented. Heat transfer, HTI, and total irreversibility under gravity
oscillation condition are examined. The average Nu, Be, and Ns are adopted to
characterize the heat transfer and irreversibilities. In the steady-state limit, both the Nu
and Ns exhibit little variation of the Ra, when the Ra is considerably smaller in
magnitude ðRa . 100Þ: For a higher Ra, both the Nu and Ns indicate a linear variation
of Ra on a log-log plot. For all the values of the Nu and Ns investigated, the maximum
is at or near a 2108 angle of orientation. Gravity oscillation introduces periodic
behavior to the Nu, Be, and Ns rate. Depending on the frequency and the Ra, three
distinguishable regimes of c behavior are identified:

. periodic and synchronous (PSR);

. periodic and asynchronous; and

. non-periodic and asynchronous.
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